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Abstract. We consider a disentanglement of the operator functions of the form
γ α . . . γ β exp{ωµνγ µγ ν}, whereγ µ are generating elements of a Clifford algebra (γ matrices,
for example). To this end we formulate a path integral reduction procedure which allows one
to obtain the functions under consideration in Sym-form. Then, by means of path integration,
we obtain explicit decompositions of the operator functions in Sym-products ofγ matrices (in
the linearly independentγ -matrix structures) valid in arbitrary dimensions. Several particular
examples are analysed in detail.

1. Introduction

As is well known, path integrals are widely and fruitfully applied in contemporary theoretical
physics [1]. For example, they are used to solve the Schrödinger equation and the equations
of diffusion theory, they are well adopted for quasiclassical calculations in quantum
mechanics, they are used for the quantization of gauge theories and serve as the basic
language in instanton physics, and they have found wide application in statistical mechanics,
especially when methods of quantum field theory are used. The integrals over Grassmann
variables introduced by Berezin [2] made it possible to define the corresponding path
integrals over Grassmann-odd trajectories. This enlarged even more the field of application
of path integrals [3]. In the present paper we would like to focus on the possibility of
how one can use path integrals over Grassmann-odd trajectories to disentangle complicated
functions on non-commuting operators (some rules of dealing with such functions were
considered in [4–6]). Namely, we are going to consider the operator functions of the form

Rk = γ α . . . γ β︸ ︷︷ ︸
k

exp{ωµνγ µγ ν} k < D (1)

where the constant matrixω is antisymmetric,ωµν = −ωνµ, andγ µ, µ = 0, 1, . . . , D − 1,
are generating elements of some Clifford algebra,

[γ µ, γ ν ]+ = 2ηµν. (2)

The latter can be, in particular, understood asγ -matrices inD dimensions (in this case,
ηµν = diag(1,−1, . . . ,−1)). Expressions of the form (1) frequently arise in different
theoretical constructions. Here one ought to mention spinor representations of the Lorentz
group. It is also known that propagators of relativistic spinning particles and superstrings in
external fields, derived by means of the Schwinger proper-time method, containγ matrices
in the form (1). Performing calculations with propagators of that kind, one inevitably comes
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to the problem of the expansion of such expressions in terms of independentγ -matrix
structures. One has also to mention that modern field theories and superstring theory are
usually formulated in spacetime dimensions different from four. Thus, it is important to
analyse the structure of the operator functions (1) for arbitrary dimensions. Moreover,
commutation relations between the generators0a of a Lie algebra can be realized by bi-
linear combinations of some Clifford algebra generating elements, similar to Schwinger-
type representations via creation and annihilation operators [7]. Indeed, let, for example,
0a, a = 1, . . . , n, be generators ofSU(N) group, [0a, 0b] = ifabc0c. Then one can see
that the commutation relations of the algebra can be obeyed by means of the following
representation:0a = − 1

4ifacdγcγd , whereγa are generators of the corresponding Clifford
algebra, [γa, γb]+ = δab. Then finite transformations of the corresponding Lie group are
presented by the operator functionsR0. Thus, the operator problem under consideration
seems to be of current interest. We present a decomposition of the operator functions (1) via
symmetrical (Sym) products ofγ matrices which constitute linearly independent structures
in a finite number. To do this we formulate a Grassmann path integral reduction procedure
which allows one to obtain the functions under consideration in Sym-form. Then the
problem can be solved by means of a path integration. Thus, we obtain the explicitγ -matrix
structure of the operator functions under consideration in arbitrary dimensions. Finally, we
consider particular cases in lower dimensions (D = 3, 4) identifying the corresponding
decompositions with some known formulae derived by means of direct combinatoric
methods strongly related to concrete properties ofγ matrices in such dimensions. We
find it remarkable that the solution of the operator problem is facilitated considerably by
using the method of path integration. This extends the list of its useful applications.

2. T and Sym form of the operator functions

First, let us consider a particular case of the operator expression (1), namely,R0. Using the
famous Feynman consideration [5], we attach a continuous indext (we will call it time)
to the operators and assume that the order in which the operators act is determined by the
values of the indices (‘the operator with higher time acts later’) instead of the position of
the operators on the paper. This chronological product will be indicated byP, for example,

Pσµν(t1)σ κλ(t2) = 2(t1− t2)σµνσ κλ +2(t2− t1)σ κλσµν.
Under the sign of the chronological product the operatorsσµν(t) commute and can be
treated as ordinaryc-numbers. With this in view and taking into account the fact that
expa expb = exp(a + b) for a, b commuting, one obtains

R0 = P exp

{∫ 1

0
ωµνσ

µν(t) dt

}
. (3)

One can note that expressions similar to (3) arise naturally in quantum-mechanical
problems with Hamiltonians of the formH(t) = iωµν(t)γ µγ ν . In this case the evolution
operator between the instantst = 0 andt = 1 has the form

U = P exp

{∫ 1

0
ωµν(t)σ

µν(t) dt

}
(4)

where the indext is now attached in a natural way to theσ matrices.
How do we calculate expression (3) efficiently? A convenient way is to use the Wick

theorem [8] for appropriately definedT products of some operators whose commutators
or anticommutators arec-numbers. In the case under consideration,γ matrices are such
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operators with anticommutators (2) beingc-numbers. This dictates the choice of the
‘fermionic’ T product forγ matrices,

T γ µ1(t1) . . . γ
µn(tn) =

∑
P

(−)sgn(P )2(tP (1), . . . , tP (n))γ
µP(1) . . . γ µP(n) n = 2, 3, . . .

T γ µ(τ ) = γ µ 2(t1, . . . , tn) = 2(t1− t2) . . . 2(tn−1− tn) (5)

where sgn(P ) stays for the parity of the permutationP . In the T product theγ µ(t)
anticommute, i.e. they behave like Grassmann-odd objects. Another product ofγ matrices
in which they have the same behaviour is the symmetrical product,

Symγ µ1 . . . γ µn = 1

n!

∑
P

(−)sgn(P )γ µP(1) . . . γ µP(n) n = 1, 2, . . .

Symγ µ = γ µ. (6)

In contrast with the case of theT product,γ matrices in the Sym products carry discrete
indices only and the latter take a finite numberD of values. Hence, due to the antisymmetry
of (6) under permutations of the indices, every Sym product of more thanD γ matrices
vanishes. The unique (up to permutations) non-vanishing Sym product ofγ matrices,
Symγ 0 . . . γ D−1, in the case ofD odd coincides with the identity operator 1 due to the
anticommutation relations (2). ForD even, the matrixγ D = γ 0 . . . γ D−1 is distinct from
1. So, in any dimensionD the identity 1 and the matrices

Symγ µ1 . . . γ µk µ1 < µ2 < · · · < µk, k = 1, 2, . . . ,2

[
D

2

]
form a basis in the associative algebra generated byγ 0, . . . , γ D−1 and will be referred to
as independentγ -matrix structures [9]. A modification of the Wick theorem allows one to
express theT products in terms of Sym products ofγ matrices. The difference between
theT product and the Sym product of twoγ matrices (the contraction), being proportional
to their anticommutator, is ac-number,

T γ µ1(t1)γ
µ1(t2) = Symγ µ1γ µ2 +1µ1µ2(t1, t2)

1µ1µ2(t1, t2) = ηµ1µ2ε(t1− t2) ε(t) =
{

1 t > 0

−1 t < 0.
(7)

Let a functional

F [ζ ] =
∑
n

∫ 1

0
dt1 . . .

∫ 1

0
dtn fµ1...µn(t1 . . . tn)ζ

µ1(t1) . . . ζ
µn(tn) (8)

on the space of Grassmann-odd valued functionsξµ(t) be given. Then the matrixT F [γ ]
can be presented as a series in Sym products

T F [γ ] = Sym

[
exp

{
− 1

2

δ`

δζµ
? 1µν ?

δ`

δζν

}
F [ζ ]

∣∣∣∣
ζ(t)=γ

]
(9)

whereδ`/δζµ stays for the left derivative, and a condensed notation is used in which the
integrations over time are denoted by a star, i.e.

δ`

δζµ
? 1µν ?

δ`

δζ ν
=
∫ 1

0
dt1

∫ 1

0
dt2

δ`

δζµ(t1)
1µν(t1, t2)

δ`

δζ ν(t2)
.

Sometimes discrete indices will also be omitted. In this case all tensors of second rank
have to be understood as matrices with lines marked by the first contravariant indices of
the tensors and with columns marked by the second covariant indices of the tensors.
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The representation (9) is a functional formulation of the Wick theorem (Hori procedure
[10]), modified to the fermionic case and to the transition fromT to Sym product [11]. To
use the Wick theorem (9) in the problem at hand we may replace theP product in (3) for
the T product,

P exp

{∫ 1

0
ωµνσ

µν(t) dt

}
= T exp

{∫ 1

0
ωµνγ

µ(t)γ ν(t) dt

}
. (10)

To justify the formula (10) one also has to define theT product for coinciding values of
some continuous indices (the chronological prescription (6) fails to do it) and then to check
(10) itself. It is convenient to define theT product for all time values by

T γ µ1(t1) . . . γ
µn(tn) = Sym

[
exp

{
− 1

2

δ`

δζµ
? 1µν ?

δ`

δζ ν

}
ζµ1(t1) . . . ζ

µn(tn)

∣∣∣∣
ζ=γ

]
n = 1, 2, . . . (11)

where1µν is given by (7),1µν(t, t) = ηµνε(0) and some finite value has been assigned
to ε(0). Due to the Wick theorem (9), this definition is compatible with the chronological
prescription (5). Using (11) one obtains

T γ µ1(t1)γ
ν1(t1) . . . γ

µn(tn)γ
νn(tn) = P(σµ1ν1(t1)+ ε(0)) . . . (σµnνn(tn)+ ε(0)) (12)

where the timest1, . . . , tn are supposed to be distinct. Substituting (12) intoT exp{ωµνγ µ ?
γ ν} one finds that the terms depending onε(0) vanish due to the antisymmetry ofω, and
equation (10) takes place independently of the value assigned toε(0).

3. Path integral formulation of the Hori procedure

Wick theorem (9) admits a path-integral formulation. We define Gaussian and quasi-
Gaussian path integrals over a space of Grassmann-odd trajectories in the framework of
the perturbation theory approach [12–14]. The first one is defined as

I (K, ρ,E) =
∫
E

Dξ exp{ 14ξµ ? Kµν ? ξν + ρµ ? ξµ}

= 3DetK1/2 exp{ρµ ? Gµν ? ρν} (13)

where ξµ(t) are Grassmann-odd trajectories of integration,ρµ(t) are Grassmann-odd
sources,K is a Grassmann-even antisymmetric kernelKµν(t, t

′) = −Kνµ(t ′, t), Gµν(t, t ′)
is an inverse kernel (Green function),∫ 1

0
dt ′Kµν(t, t ′)Gνλ(t ′, t ′′) = δλµδ(t ′ − t ′′) (14)

and3 is a numerical factor which contains no parameters essential to the theory (parameters
defining the matricesKµν(t, t ′)). In general, equation (14) has more than one solution and
G(t, t ′) is specified by imposing some boundary conditions. In a natural way these boundary
conditions can be understood as defining the space of integrationE. In particular, the
kernelK is not degenerate onE, i.e. the homogeneous equation

∫ 1
0 dt ′Kµν(t, t ′)ξ ν(t ′) = 0

does not have non-trivial solutions inE. Thus, equation (14) for the Green function
has a unique solution. One can understand the spaceE as a function of the form
ξµ(t) = ∫ 1

0 dt ′Kµν(t, t ′)ρν(t ′), where ρ belongs to the space of sources [11]. In this
case the invariance of the spaceE under the shifts on such functions is a trivial fact which



Application of path integration to operator calculus 7795

is important for efficient manipulations with the integrals under consideration. The quasi-
Gaussian path integrals are defined via the Gaussian ones by the prescription∫

E

Dξ exp

{
1

4
ξµ ? Kµν ? ξ

ν + ρµ ? ξµ
}
F [ξ ] = F

[
δl

δρ

]
I (K, ρ,E) (15)

whereF [ξ ] are arbitrary analytic functionals onE andδl/δρ stand for the left derivatives.
In the construction under consideration we encounter matricesKµν(t, t

′), part of the indices
of which are continuous. To avoid problems with the calculation of the determinants of
such matrices, as well as problems with the definition of the factor3, we may consider the
relative quantities

I (K, ρ,E)

I (K0, 0, E)
= Det(K/K0)

1
2 exp{ρµ ? Gµν ? ρν} (16)

which are sufficient for our purposes. The matrixK0 can often be chosen in a form so as
to simplify the calculation of the determinant Det(K/K0) (see later).

We will use two properties of the quasi-Gaussian path integrals which can be checked
using the given definitions. First, the Gaussian path integral can be expressed as a quasi-
Gaussian one,

I (K, ρ,E) = exp

{
1

4

δ`

δρµ
? (K −K0)

µν ?
δ`

δρν

}
I (K0, ρ, E) (17)

provided both Gaussian integralsI (K, ρ,E) andI (K0, ρ, E) exist. Second, quasi-Gaussian
path integrals are invariant under the shifts, i.e.∫
E

Dξ exp{ 14(ξ + ζ )µ ? Kµν ? (ξ + ζ )ν}F [ξ + ζ ] =
∫
E

Dξ exp{ 14ξµ ? Kµν ? ξν}F [ξ ] (18)

whereζµ is an arbitrary trajectory fromE.
The path-integral formulation of the Wick theorem (9) is based on the following

representation of the quadratic exponent,

exp{ρµ ? Gµν ? ρν} = I (K, ρ,E)

I (K, 0, E)
. (19)

ChoosingGµν(t, t ′) = − 1
21

µν(t, t ′) (where1 is given by (7)), the matrixK is easily
recognized to be(K0)µν(t, t

′) = −ηµνδ′(t − t ′), and the spaceE is determined by the
boundary condition satisfied by1,

1µν(0, t)+1µν(1, t) = 0 0< t < 1. (20)

According to the definition given,E in (19) is the space of Grassmann-odd trajectories
ξµ(t) obeying the antiperiodic boundary condition

ξ(0)+ ξ(1) = 0. (21)

Replacing the odd sourcesρµ(t) in (19) by left derivatives and applying the operator obtained
to a functionalF [ζ ], one gets

exp

{
− 1

2

δ`

δζµ
? 1µν ?

δ`

δζν

}
F [ζ ] =

∫
ξ(0)+ξ(1)=0

Dξ exp

{
− 1

4
ξ ? ξ̇

}
F [ξ + ζ ] (22)

where

Dξ = Dξ∫
ξ(0)+ξ(1)=0Dξ exp{− 1

4ξ ? ξ̇}
. (23)

Using equation (22) one can present the Wick theorem (9) in the form

T F [γ ] = Sym

[ ∫
ξ(0)+ξ(1)=0

Dξ exp{− 1
4ξ ? ξ̇}F [ξ + ζ ]|ζ=γ

]
. (24)
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4. Reduction of the operator functions

Choosing the functionalF [ζ ] in (24) of the form

F [ζ ] = exp

{∫ 1

0
ωµνζ

µ(t)ζ ν(t) dt

}
and using (10), one gets the following representation for the matrixR0

R0 = Sym

[ ∫
ξ(0)+ξ(1)=0

Dξ exp{− 1
4ξ ? ξ̇} exp{ωµν(ξ + ζ )µ ? (ξ + ζ )ν}|ζ=γ

]
. (25)

The quasi-Gaussian path integral in (25) can be understood as a Gaussian one due to the
property (17). Taking into account equation (23), one obtains

R0 = Sym

[
I (Kω, 2ζω,E)

I (K0, 0, E)
exp(ωµνζ

µ ? ζ ν)|ζ=γ
]

(26)

where

Kω(t, t
′) = −ηδ′(t − t ′)+ 4ωδ(t − t ′). (27)

Evaluating the ratio of the path integrals in (26) by means of (16) and settingζµ(t) = γ µ
one obtains

R0 =
(

Det
Kω

K0

)1/2

Sym exp{Mµνγ
µγ ν} (28)

where

Mµν = ωµν − 4ωµκ ? G
κλ
ω ? ωλν (29)

Gω being the Green function forKω,∫ 1

0
(Kω)µν(t, t

′)Gνλ
ω (t

′, t ′′) = δνλµ (t, t ′′)
which obeys the boundary condition (20). Evaluating

Gω(t, t
′) = − 1

2 e4ω(t−t ′)(ε(t − t ′)− tanh 2ω)

and substituting in (28) we find

M = 1
2 tanh 2ω. (30)

Calculating the determinant

Det(KωK
−1
0 ) = exp Tr

{
4ω
∫ 1

0
Gsω ds

}
= det cosh 2ω (31)

and substituting (30) and (31) into (28) we finally get

R0 = exp{ωµνγ µγ ν}
= (det cosh 2ω)1/2Sym exp{ 12(tanh 2ω)µνγ

µγ ν}. (32)

A remarkable feature of the expansion on the right-hand side of equation (32) is that
it contains only a finite number of terms. Indeed, every Sym product of more thanD

γ matrices vanishes. We have found, in fact, an explicit decomposition, valid in any
dimension, of the spinor representation matrix exp{ωµνγ µγ ν} for the Lorentz transformation
L = exp 4ω in terms of the independentγ -matrix structures.

TakingD = 3 where, for example,γ 0 = σ 3, γ 1 = iσ 1, γ 2 = iσ 2, we get

R0 = exp{ωµνγ µγ ν} = (det cosh 2ω)1/2[1+ 1
2(tanh 2ω)µνγ

µγ ν ] (33)
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which can be easily transformed to the familiar form

exp

{
i

2
θ · σ

}
= cos

θ

2
+ in · σ sin

θ

2
θ = θn n2 = 1

where

θ2 =
3∑
i=1

θ2
i θ1 = 4iω20 θ2 = 4iω01 θ3 = −4ω12.

In the caseD = 4 one obtains

R0 = exp{ωµνγ µγ ν}
= (det cosh 2ω)1/2[1+ 1

2(tanh 2ω)µνσ
µν + 1

8ε
κλµν(tanh 2ω)κλ(tanh 2ω)µνγ

5]

(34)

whereγ 5 = γ 0γ 1γ 2γ 3 and εκλµν is the Levi-Civita symbol normalized byε0123 = 1. A
different form of the decomposition on the left-hand side of (34) was obtained in [15] using
a direct combinatoric method and concrete properties ofγ matrices in four dimensions,

R0 = [16G(L)]−1/2[G(L)+ 1
2εµνρσL

µνLρσ γ 5− (L2)µνσ
µν + (2+ trL)Lµνσ

µν ]

G(L) = 2(1+ trL)+ 1
2(trL)

2− 1
2trL2. (35)

The equivalence of the decompositions (34) and (35) can be checked by a straightforward,
although long, calculation which we do not present here. We stress again that the derivation
in paper [15] is strongly related toD = 4 and its generalization to other dimensions is not
clear.

To disentangle more complicated operator functions, in particular those of the form (1),
it is convenient to introduce the generating functional

J [ρ, ζ ] =
∫
ξ(0)+ξ(1)=0

Dξ exp{− 1
4ξ ? ξ̇ + ωµν(ξ + ζ )µ ? (ξ + ζ )ν + ρµ ? (ξ + ζ )µ}. (36)

Then

Rk = lim
tk→1

. . . lim
t1→1

Sym

[
δk`

δρα(t1) . . . δρβ(tk)
J [ρ, ζ ]|ρ=0;ζ=γ

]
. (37)

Taking into account (23), the generating functionalJ [ρ, ζ ] is calculated by means of (16)
and (31) to be

J [ρ, ζ ] = (det cosh 2ω)1/2 exp{(ρ + 2ζω)µ ? G
µν
ω ? (ρ − 2ωζ)ν + ωµνζµ ? ζ ν}. (38)

Using equations (37) and (38) one finds a formula which is valid in any dimension

R1 = γ α exp{ωµνγ µγ ν} = Sym[(η + tanh 2ω)ακγκ exp{ 12(tanh 2ω)µνγ
µγ ν}]. (39)

ForD = 4 the expression on the right-hand side reduces to

R1 = γ α exp{ωµνγ µγ ν}
= (η + tanh 2ω)ακγκ + 1

2ε
κµνλ(η + tanh 2ω)α κ(tanh 2ω)µνγ

5γλ. (40)

Another representation for the left-hand side of (40) has been derived inD = 4 using
concrete properties ofγ matrices in such dimensions [16],

R1 = γ α exp{ωµνγ µγ ν} = (e2ω cos 2ω∗)α κγ κ + (e2ω sin 2ω∗)α κγ 5γ κ . (41)

One can prove the equivalence of both decompositions (40) and (41).
As was mentioned in the introduction, operator expressions of the form (1) often appear

in different constructions, especially in quantum field theory. Their decompositions in
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independentγ -matrix structures are necessary for concrete calculations. A simple example
gives us the Dirac propagator of a spinning particle in a constant uniform electromagnetic
field, which was calculated first by Schwinger [17] in four dimensions:

Sc0(xout, xin) =
[
γ µ
(

i
∂

∂x
µ
out
− eAµ(xout)

)
+m

] ∫ ∞
0

ds g(xout, xin, s) (42)

where the transformation functiong has the form

g(xout, xin, s) = 1

16π2

(
det

sinheF s

eF

)−1/2

exp

{
i
e

2
xoutFxin − ism2− i

e

4
(xout− xin)F

× coth(eF s)(xout− xin)+ es
2
Fµνσ

µν

}
(43)

and contains an operator construction of the formR0. By means of the formula (34) one
can obtain the explicitγ -matrix structure of the transformation function to be

g(xout, xin, s) = 1

16π2

(
det

tanheF s

eF

)−1/2

× exp

{
i
e

2
xoutFxin − ism2− i

e

4
(xout− xin)F coth(eF s)(xout− xin)

}
×
[

1+ 1

2
(tanheF s)µνσ

µν + 1

8
εαβµν(tanheF s)αβ(tanheF s)µνγ

5

]
. (44)
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