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Abstract. We consider a disentanglement of the operator functions of the form
re...yP explwy*y'}, wherey# are generating elements of a Clifford algebyargatrices,

for example). To this end we formulate a path integral reduction procedure which allows one
to obtain the functions under consideration in Sym-form. Then, by means of path integration,
we obtain explicit decompositions of the operator functions in Sym-producsroatrices (in

the linearly independent-matrix structures) valid in arbitrary dimensions. Several particular
examples are analysed in detail.

1. Introduction

As is well known, path integrals are widely and fruitfully applied in contemporary theoretical
physics [1]. For example, they are used to solve the @thger equation and the equations

of diffusion theory, they are well adopted for quasiclassical calculations in quantum
mechanics, they are used for the quantization of gauge theories and serve as the basic
language in instanton physics, and they have found wide application in statistical mechanics,
especially when methods of quantum field theory are used. The integrals over Grassmann
variables introduced by Berezin [2] made it possible to define the corresponding path
integrals over Grassmann-odd trajectories. This enlarged even more the field of application
of path integrals [3]. In the present paper we would like to focus on the possibility of
how one can use path integrals over Grassmann-odd trajectories to disentangle complicated
functions on non-commuting operators (some rules of dealing with such functions were
considered in [4-6]). Namely, we are going to consider the operator functions of the form

Ry =y%...yP explo,y y'} k<D Q)
——
k

where the constant matrix is antisymmetricw,, = —w,,, andy*, n =0,1,..., D —1,
are generating elements of some Clifford algebra,

V" vl = 20" 2
The latter can be, in particular, understoodyasmatrices inD dimensions (in this case,
nw = diagd, —1,..., =1)). Expressions of the form (1) frequently arise in different

theoretical constructions. Here one ought to mention spinor representations of the Lorentz
group. Itis also known that propagators of relativistic spinning particles and superstrings in
external fields, derived by means of the Schwinger proper-time method, contaatrices

in the form (1). Performing calculations with propagators of that kind, one inevitably comes
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to the problem of the expansion of such expressions in terms of indepepdmatrix
structures. One has also to mention that modern field theories and superstring theory are
usually formulated in spacetime dimensions different from four. Thus, it is important to
analyse the structure of the operator functions (1) for arbitrary dimensions. Moreover,
commutation relations between the generaioysof a Lie algebra can be realized by bi-
linear combinations of some Clifford algebra generating elements, similar to Schwinger-
type representations via creation and annihilation operators [7]. Indeed, let, for example,
I',,a=1,...,n, be generators ofU(N) group, [y, I'y] = i fuIc. Then one can see

that the commutation relations of the algebra can be obeyed by means of the following
representationT’, = —%i fucaveva, Wherey, are generators of the corresponding Clifford
algebra, ., y»]+ = d4»- Then finite transformations of the corresponding Lie group are
presented by the operator functioRg. Thus, the operator problem under consideration
seems to be of current interest. We present a decomposition of the operator functions (1) via
symmetrical (Sym) products gf matrices which constitute linearly independent structures

in a finite number. To do this we formulate a Grassmann path integral reduction procedure
which allows one to obtain the functions under consideration in Sym-form. Then the
problem can be solved by means of a path integration. Thus, we obtain the exptiitrix
structure of the operator functions under consideration in arbitrary dimensions. Finally, we
consider particular cases in lower dimensiods £ 3, 4) identifying the corresponding
decompositions with some known formulae derived by means of direct combinatoric
methods strongly related to concrete propertiesyofnatrices in such dimensions. We
find it remarkable that the solution of the operator problem is facilitated considerably by
using the method of path integration. This extends the list of its useful applications.

2. T and Sym form of the operator functions

First, let us consider a particular case of the operator expression (1), natpelysing the
famous Feynman consideration [5], we attach a continuous indere will call it time)

to the operators and assume that the order in which the operators act is determined by the
values of the indices (‘the operator with higher time acts later’) instead of the position of
the operators on the paper. This chronological product will be indicatefd, igr example,

PV ()0 (12) = O(ty — 12)0™ "> + O(ty — 11)o* .

Under the sign of the chronological product the operatotfs(r) commute and can be
treated as ordinary-numbers. With this in view and taking into account the fact that
expa expb = expla + b) for a, b commuting, one obtains

1
Ro="P exp{ / W "V (1) dt}. 3)
0

One can note that expressions similar to (3) arise naturally in quantum-mechanical
problems with Hamiltonians of the for(t) = iw,,(t)y*y". In this case the evolution
operator between the instants= 0 andr = 1 has the form

1
U=P exp{/ a)w(t)cr“”(t)dt} 4)
0

where the index is now attached in a natural way to thematrices.

How do we calculate expression (3) efficiently? A convenient way is to use the Wick
theorem [8] for appropriately definefl products of some operators whose commutators
or anticommutators are-numbers. In the case under consideratipriatrices are such
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operators with anticommutators (2) beirgnumbers. This dictates the choice of the
‘fermionic’ T product fory matrices,

Ty™(n)...y" (1,) = Z(—)Sg“”@(tp(l), P Y e n=223,...
P

Ty"(z) =y" O(ty, ... 1) =O(t1 —12) ... O(t,_1 — 1) (5)

where sgP) stays for the parity of the permutatioA. In the T product they*(r)
anticommute, i.e. they behave like Grassmann-odd objects. Another produatafrices
in which they have the same behaviour is the symmetrical product,

1
Symy'.ytn = SN (I Epen ytre =12,
P

Symy* = y#. (6)

In contrast with the case of thE product,y matrices in the Sym products carry discrete
indices only and the latter take a finite numidziof values. Hence, due to the antisymmetry
of (6) under permutations of the indices, every Sym product of more than matrices
vanishes. The unique (up to permutations) non-vanishing Sym produgt mftrices,
Symy?...¥P~1 in the case ofD odd coincides with the identity operator 1 due to the
anticommutation relations (2). Fdp even, the matrixy? = y°...y?~1is distinct from

1. So, in any dimensio the identity 1 and the matrices

Symy#Ht .yt M1<M2<-~-<,uk,k=1,2,...,2|:§i|
form a basis in the associative algebra generategthy. ., 2~ and will be referred to
as independent-matrix structures [9]. A modification of the Wick theorem allows one to
express thel' products in terms of Sym products f matrices. The difference between
the T product and the Sym product of two matrices (the contraction), being proportional
to their anticommutator, is anumber,

Ty" (t)y"*(t2) = Symy 1yH2 4 AF2(1y, 1)

AM2 (1, 1) = nt*H2e(ty — to) et) = ! =0 (7)
LR Emen TR “1-1 <o
Let a functional
1 1
F[@:] = Z/O dtl ce /0 dtn ful...u,, (tl cee tn)é‘ul(tl) oo é-ﬂn (tn) (8)

on the space of Grassmann-odd valued functighg) be given. Then the matrif F[y]
16 1)
TF[y] = Sym[exp{ _ 2 A _‘}F[;]

can be presented as a series in Sym products
— 9)
288, 38y t(t)—yi|

whered, /8¢# stays for the left derivative, and a condensed notation is used in which the
integrations over time are denoted by a star, i.e.

o A" i /l dr /l dr 5 AM (1, 12) o
— % *x — = —_—.
scn TS S R TZT0) R T2 0

Sometimes discrete indices will also be omitted. In this case all tensors of second rank
have to be understood as matrices with lines marked by the first contravariant indices of
the tensors and with columns marked by the second covariant indices of the tensors.
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The representation (9) is a functional formulation of the Wick theorem (Hori procedure
[10]), modified to the fermionic case and to the transition fréno Sym product [11]. To
use the Wick theorem (9) in the problem at hand we may replac@®theoduct in (3) for
the T product,

1 1
P exp{/ o™’ (1) dt} =T exp{/ wwy“(t)y”(t)dt}. (10)

0 0
To justify the formula (10) one also has to define theproduct for coinciding values of
some continuous indices (the chronological prescription (6) fails to do it) and then to check
(10) itself. It is convenient to define thHe product for all time values by

1
T y*(t) ... y"(t,) = Sym| e — ——— % A" M(t) ... "M (1,
yH(r) . yPi(t) = Sy [ Xp{ zw* *SU}; (r1)...c"( ){zj

8¢ S
n=12 ... (11)

where A*¥ is given by (7),A"* (¢, t) = n*’¢(0) and some finite value has been assigned
to €(0). Due to the Wick theorem (9), this definition is compatible with the chronological
prescription (5). Using (11) one obtains

Ty"(t)y"™ () ... y" (t)y ™ (1) = P(0"** (1) + €(0) ... (6" (1y) + €(0)) (12)

where the timeg, ..., #, are supposed to be distinct. Substituting (12) Mtexp{w,.,y* *
y"} one finds that the terms depending €i®) vanish due to the antisymmetry ef and
equation (10) takes place independently of the value assigne@to

3. Path integral formulation of the Hori procedure

Wick theorem (9) admits a path-integral formulation. We define Gaussian and quasi-
Gaussian path integrals over a space of Grassmann-odd trajectories in the framework of
the perturbation theory approach [12-14]. The first one is defined as

I(K,p, E) = / D& exp(FE" x K,y % ¥ + p, x &M}
E
= A Detk Y2 exp(p, » G* * p,} (13)

where £#(r) are Grassmann-odd trajectories of integratign,(s) are Grassmann-odd
sources K is a Grassmann-even antisymmetric kerkel, (¢, ') = —K,,(t',t), G*’(t, t')
is an inverse kernel (Green function),

1
/0 dr’ K (1, 1)GY (1 1) = 8,,8(t" — 1) (14)

andA is a numerical factor which contains no parameters essential to the theory (parameters
defining the matriceX,, (¢, t')). In general, equation (14) has more than one solution and
G(t, t') is specified by imposing some boundary conditions. In a natural way these boundary
conditions can be understood as defining the space of integratiorin particular, the
kernel K is not degenerate oA, i.e. the homogeneous equatiﬁf'l dr’ K, (@, 1)) =0

does not have non-trivial solutions iR. Thus, equation (14) for the Green function

has a unique solution. One can understand the sgacas a function of the form

EH() = fol dr’ K, (t,t)p" ("), where p belongs to the space of sources [11]. In this
case the invariance of the spaEeunder the shifts on such functions is a trivial fact which
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is important for efficient manipulations with the integrals under consideration. The quasi-
Gaussian path integrals are defined via the Gaussian ones by the prescription

1 )
[ vz exp |zt Kuve v pnet | Flel = £ L1k 8y 9
E o

where F[£] are arbitrary analytic functionals oA andg;/§p stand for the left derivatives.

In the construction under consideration we encounter matkces, '), part of the indices

of which are continuous. To avoid problems with the calculation of the determinants of

such matrices, as well as problems with the definition of the fattove may consider the

relative quantities
I(K,p, E)
I1(Ko, 0, E)

which are sufficient for our purposes. The matky can often be chosen in a form so as

to simplify the calculation of the determinant D&t/ Ko) (see later).

We will use two properties of the quasi-Gaussian path integrals which can be checked
using the given definitions. First, the Gaussian path integral can be expressed as a quasi-
Gaussian one,

= Det(K /Ko)? exp{p, « G* * p,} (16)

8¢

156
1<K,p,E>=exp{1$*<K—K0)W*5 }I(Ko,p,E) (17)
i v

provided both Gaussian integrdlék, p, E) and! (Ko, p, E) exist. Second, quasi-Gaussian
path integrals are invariant under the shifts, i.e.

/EDs eXp[%(s+§)“*KW*($+§)“}F[$+§]=/EDS explLE" « K, + £} F[E] (18)

where¢* is an arbitrary trajectory fronk.

The path-integral formulation of the Wick theorem (9) is based on the following
representation of the quadratic exponent,
I(K,p,E)

nv —
explp, * G*" x p,} = T(K.0.E) (29)
ChoosingG*’(t, 1) = —3A*(t,t') (where A is given by (7)), the matrixk is easily
recognized to b&Ko),,(t,t') = —n,,é'(t — '), and the space& is determined by the
boundary condition satisfied b,
AM(O, 1) + A" (L, 1) =0 O<t <1 (20)

According to the definition givenE in (19) is the space of Grassmann-odd trajectories
& (r) obeying the antiperiodic boundary condition

§0+&1 =0 (21)
Replacing the odd sourceg(¢) in (19) by left derivatives and applying the operator obtained
to a functionalF[¢], one gets

1 v, O / { 1. }
——— x A"k — 1 F = D _Zextlp 29
eXp{ 288, 8¢y } <] £(0)+£(1)=0 Sexp) — g5 [§ +¢] (22)

- Dé§
Jeorew=o D& exp—3& * £}
Using equation (22) one can present the Wick theorem (9) in the form

TFy] = Sym[ / D expl—1¢ « £}Fls + c]u:y] (24)
£(0)+&£(1H=0

Dg

(23)
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4. Reduction of the operator functions

Choosing the functionat[¢] in (24) of the form
Fl¢] = eXp{ /Olww{"(t);“”(t) dt}

and using (10), one gets the following representation for the ma&fix

Ro= Sym[/ D& exp(—3& * &} explwy (6 + 6" (€ + c)“}uy]. (25)
£0)+£(H=0

The quasi-Gaussian path integral in (25) can be understood as a Gaussian one due to the
property (17). Taking into account equation (23), one obtains

3 I(K,,2¢w, E) o
RO = Sym|: I(Ko, 0’ E) EXD(CUWE *C )|{=yi| (26)
where
K,(t,t)=—n8—1)+ 408 — ). (27)

Evaluating the ratio of the path integrals in (26) by means of (16) and settitrg = y*
one obtains

K \Y2
Ro = (Det?") Sym exgM,,, v y"} (28)
0

where
M, = wpy — oy * GZ)‘ * Wy (29)
G, being the Green function fak,,

1
| Ko =
0

which obeys the boundary condition (20). Evaluating

G,(t,1) = =36~ (e(t — 1') — tanh )
and substituting in (28) we find

M = jtanh2v. (30)
Calculating the determinant

1
Det(K, Ko 1) = exp Tr{%/ Gyo ds} = detcosh @ (31)
0

and substituting (30) and (31) into (28) we finally get

RO = eXp{a)M\,]/M'}/V}
= (detcosh @)/2Sym exg3 (tanh 20),,,y"y"}. (32)

A remarkable feature of the expansion on the right-hand side of equation (32) is that
it contains only a finite number of terms. Indeed, every Sym product of more Ehan
y matrices vanishes. We have found, in fact, an explicit decomposition, valid in any
dimension, of the spinor representation matrix{exgy*y "} for the Lorentz transformation
L = exp 4w in terms of the independemt-matrix structures.

Taking D = 3 where, for exampley® = o3, y! =iol, y? = io?, we get

Ro = explw,,y"y"} = (detcosh @)?[1 + L(tanh 2v),,,y"y"] (33)
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which can be easily transformed to the familiar form
i 0 . .0
exp{ze-a}zcoszﬂn-asmz 0 =6n n®>=1
where
3
92 = Zeiz 91 = 4iw20 92 = 4ia)01 93 = —40)12.
i=1

In the caseD = 4 one obtains

Ro = eXD[w,wJ/“V”}
= (detcosh @)?[1 + 3 (tanh 2),,,0"" + 2" (tanh ),; (tanh ) ,,°]

(34)
wherey® = y0%1y2y3 ande**" is the Levi-Civita symbol normalized by?'? = 1. A
different form of the decomposition on the left-hand side of (34) was obtained in [15] using
a direct combinatoric method and concrete propertieg afatrices in four dimensions,
Ro = [16G(L)] Y?[G(L) + 3€u0po L"" L7 y° — (L?),0y0 ™" + (24 tr L)L ,,,0™"]
G(L)=2(1+trL) + 5(trL)? — tr L% (35)
The equivalence of the decompositions (34) and (35) can be checked by a straightforward,
although long, calculation which we do not present here. We stress again that the derivation
in paper [15] is strongly related t® = 4 and its generalization to other dimensions is not
clear.

To disentangle more complicated operator functions, in particular those of the form (1),
it is convenient to introduce the generating functional

Jlp. ¢l =/ DE exp{— 26 €+ wuE+ O  x E+ )"+ pu* E+)") (36)
£(0)+£(1H=0

Then
k

Ry = lim .. |i . —0¢=y |- 7
k zkILnl zllinlsym[Spa(tl) ... 8pp(t) Ilp, C]|p0,§y:| (37)

Taking into account (23), the generating functiod@p, ¢] is calculated by means of (16)
and (31) to be

J[p. ¢] = (detcosh @)Y?exp((p + 20 w), * G * (p — 20¢)y + Wt * L") (38)
Using equations (37) and (38) one finds a formula which is valid in any dimension
Ry = y* explo,y"y"} = Sym[(n + tanh 20)** y, exp{3 (tanh 20) ., "y "}]. (39)

For D = 4 the expression on the right-hand side reduces to
R1 = y® explo,y"y"}
= (n + tanh 20)*y, + 3e“** (5 + tanh )* ¢ (tanh ), ¥%y;.  (40)
Another representation for the left-hand side of (40) has been derivdd #a 4 using
concrete properties gf matrices in such dimensions [16],
R1 =y explw,y"y'} = (€% cos ") (¥ + (€2 sin2w*)¥ .y v . (41)
One can prove the equivalence of both decompositions (40) and (41).

As was mentioned in the introduction, operator expressions of the form (1) often appear
in different constructions, especially in quantum field theory. Their decompositions in
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independeni -matrix structures are necessary for concrete calculations. A simple example
gives us the Dirac propagator of a spinning particle in a constant uniform electromagnetic
field, which was calculated first by Schwinger [17] in four dimensions:

] e
Sé(xout, Xin) = |:VM (' FYNE - eAM(xout)> + m] / ds g (Xout, Xin, ) (42)
0

out
where the transformation functignhas the form
1 q sinheF's
1672 eF

—1/2
.e . .e
g (Xouts Xin, §) = ) exp{|§xoutinn —ism? — |Z(xout — xin) F

x coth(e Fs)(xout — Xin) + %Fuvo’”} (43)

and contains an operator construction of the faRm By means of the formula (34) one
can obtain the explicifz-matrix structure of the transformation function to be

1 q tanhe Fs\ /2
g('xOUta xin, S) == 1&1_2 et eF

e ., e
X exp |§x0utinn —lsm” — |Z(xout — xin) F coth(e Fs) (Xout — Xin)

1 1
X |:1 + E(tanher)Wo““ + ée“’g’“’ (tanhe Fs)qp (tanher)WyS]. (44)
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